Metamath Proof Explorer


Theorem 0symgefmndeq

Description: The symmetric group on the empty set is identical with the monoid of endofunctions on the empty set. (Contributed by AV, 30-Mar-2024)

Ref Expression
Assertion 0symgefmndeq EndoFMnd = SymGrp

Proof

Step Hyp Ref Expression
1 ssid
2 fvex EndoFMnd V
3 p0ex V
4 eqid SymGrp = SymGrp
5 symgbas0 Base SymGrp =
6 5 eqcomi = Base SymGrp
7 eqid EndoFMnd = EndoFMnd
8 4 6 7 symgressbas SymGrp = EndoFMnd 𝑠
9 efmndbas0 Base EndoFMnd =
10 9 eqcomi = Base EndoFMnd
11 8 10 ressid2 EndoFMnd V V SymGrp = EndoFMnd
12 1 2 3 11 mp3an SymGrp = EndoFMnd
13 12 eqcomi EndoFMnd = SymGrp