Metamath Proof Explorer


Theorem 0thincg

Description: Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Assertion 0thincg C V = Base C C ThinCat

Proof

Step Hyp Ref Expression
1 0catg C V = Base C C Cat
2 ral0 x y Base C * f f x Hom C y
3 raleq = Base C x y Base C * f f x Hom C y x Base C y Base C * f f x Hom C y
4 2 3 mpbii = Base C x Base C y Base C * f f x Hom C y
5 4 adantl C V = Base C x Base C y Base C * f f x Hom C y
6 eqid Base C = Base C
7 eqid Hom C = Hom C
8 6 7 isthinc C ThinCat C Cat x Base C y Base C * f f x Hom C y
9 1 5 8 sylanbrc C V = Base C C ThinCat