Metamath Proof Explorer


Theorem 0top

Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006)

Ref Expression
Assertion 0top J Top J = J =

Proof

Step Hyp Ref Expression
1 olc J = J = J =
2 0opn J Top J
3 n0i J ¬ J =
4 2 3 syl J Top ¬ J =
5 4 pm2.21d J Top J = J =
6 idd J Top J = J =
7 5 6 jaod J Top J = J = J =
8 1 7 impbid2 J Top J = J = J =
9 uni0b J = J
10 sssn J J = J =
11 9 10 bitr2i J = J = J =
12 8 11 bitr2di J Top J = J =