Metamath Proof Explorer


Theorem 0totbnd

Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion 0totbnd X = M TotBnd X M Met X

Proof

Step Hyp Ref Expression
1 fveq2 X = TotBnd X = TotBnd
2 1 eleq2d X = M TotBnd X M TotBnd
3 0elpw 𝒫
4 0fin Fin
5 elin 𝒫 Fin 𝒫 Fin
6 3 4 5 mpbir2an 𝒫 Fin
7 0iun x x ball M r =
8 iuneq1 v = x v x ball M r = x x ball M r
9 8 eqeq1d v = x v x ball M r = x x ball M r =
10 9 rspcev 𝒫 Fin x x ball M r = v 𝒫 Fin x v x ball M r =
11 6 7 10 mp2an v 𝒫 Fin x v x ball M r =
12 11 rgenw r + v 𝒫 Fin x v x ball M r =
13 istotbnd3 M TotBnd M Met r + v 𝒫 Fin x v x ball M r =
14 12 13 mpbiran2 M TotBnd M Met
15 fveq2 X = Met X = Met
16 15 eleq2d X = M Met X M Met
17 14 16 bitr4id X = M TotBnd M Met X
18 2 17 bitrd X = M TotBnd X M Met X