Metamath Proof Explorer


Theorem 0totbnd

Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion 0totbnd X=MTotBndXMMetX

Proof

Step Hyp Ref Expression
1 fveq2 X=TotBndX=TotBnd
2 1 eleq2d X=MTotBndXMTotBnd
3 0elpw 𝒫
4 0fin Fin
5 elin 𝒫Fin𝒫Fin
6 3 4 5 mpbir2an 𝒫Fin
7 0iun xxballMr=
8 iuneq1 v=xvxballMr=xxballMr
9 8 eqeq1d v=xvxballMr=xxballMr=
10 9 rspcev 𝒫FinxxballMr=v𝒫FinxvxballMr=
11 6 7 10 mp2an v𝒫FinxvxballMr=
12 11 rgenw r+v𝒫FinxvxballMr=
13 istotbnd3 MTotBndMMetr+v𝒫FinxvxballMr=
14 12 13 mpbiran2 MTotBndMMet
15 fveq2 X=MetX=Met
16 15 eleq2d X=MMetXMMet
17 14 16 bitr4id X=MTotBndMMetX
18 2 17 bitrd X=MTotBndXMMetX