Metamath Proof Explorer


Theorem 0trl

Description: A pair of an empty set (of edges) and a second set (of vertices) is a trail iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0wlk.v V = Vtx G
Assertion 0trl G U Trails G P P : 0 0 V

Proof

Step Hyp Ref Expression
1 0wlk.v V = Vtx G
2 1 0wlk G U Walks G P P : 0 0 V
3 2 anbi1d G U Walks G P Fun -1 P : 0 0 V Fun -1
4 istrl Trails G P Walks G P Fun -1
5 funcnv0 Fun -1
6 5 biantru P : 0 0 V P : 0 0 V Fun -1
7 3 4 6 3bitr4g G U Trails G P P : 0 0 V