Metamath Proof Explorer


Theorem 0trlon

Description: A trail of length 0 from a vertex to itself. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 8-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypothesis 0wlk.v V = Vtx G
Assertion 0trlon P : 0 0 V P 0 = N N TrailsOn G N P

Proof

Step Hyp Ref Expression
1 0wlk.v V = Vtx G
2 1 0wlkon P : 0 0 V P 0 = N N WalksOn G N P
3 simpl P : 0 0 V P 0 = N P : 0 0 V
4 1 0wlkonlem1 P : 0 0 V P 0 = N N V N V
5 1 1vgrex N V G V
6 5 adantr N V N V G V
7 1 0trl G V Trails G P P : 0 0 V
8 4 6 7 3syl P : 0 0 V P 0 = N Trails G P P : 0 0 V
9 3 8 mpbird P : 0 0 V P 0 = N Trails G P
10 0ex V
11 10 a1i P : 0 0 V P 0 = N V
12 1 0wlkonlem2 P : 0 0 V P 0 = N P V 𝑝𝑚 0 0
13 1 istrlson N V N V V P V 𝑝𝑚 0 0 N TrailsOn G N P N WalksOn G N P Trails G P
14 4 11 12 13 syl12anc P : 0 0 V P 0 = N N TrailsOn G N P N WalksOn G N P Trails G P
15 2 9 14 mpbir2and P : 0 0 V P 0 = N N TrailsOn G N P