Metamath Proof Explorer


Theorem 0tsk

Description: The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010)

Ref Expression
Assertion 0tsk Tarski

Proof

Step Hyp Ref Expression
1 ral0 x 𝒫 x 𝒫 x
2 elsni x x =
3 0ex V
4 3 enref
5 breq1 x = x
6 4 5 mpbiri x = x
7 6 orcd x = x x
8 2 7 syl x x x
9 pw0 𝒫 =
10 8 9 eleq2s x 𝒫 x x
11 10 rgen x 𝒫 x x
12 eltsk2g V Tarski x 𝒫 x 𝒫 x x 𝒫 x x
13 3 12 ax-mp Tarski x 𝒫 x 𝒫 x x 𝒫 x x
14 1 11 13 mpbir2an Tarski