Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Tarski classes
0tsk
Next ⟩
tsksdom
Metamath Proof Explorer
Ascii
Unicode
Theorem
0tsk
Description:
The empty set is a (transitive) Tarski class.
(Contributed by
FL
, 30-Dec-2010)
Ref
Expression
Assertion
0tsk
⊢
∅
∈
Tarski
Proof
Step
Hyp
Ref
Expression
1
ral0
⊢
∀
x
∈
∅
𝒫
x
⊆
∅
∧
𝒫
x
∈
∅
2
elsni
⊢
x
∈
∅
→
x
=
∅
3
0ex
⊢
∅
∈
V
4
3
enref
⊢
∅
≈
∅
5
breq1
⊢
x
=
∅
→
x
≈
∅
↔
∅
≈
∅
6
4
5
mpbiri
⊢
x
=
∅
→
x
≈
∅
7
6
orcd
⊢
x
=
∅
→
x
≈
∅
∨
x
∈
∅
8
2
7
syl
⊢
x
∈
∅
→
x
≈
∅
∨
x
∈
∅
9
pw0
⊢
𝒫
∅
=
∅
10
8
9
eleq2s
⊢
x
∈
𝒫
∅
→
x
≈
∅
∨
x
∈
∅
11
10
rgen
⊢
∀
x
∈
𝒫
∅
x
≈
∅
∨
x
∈
∅
12
eltsk2g
⊢
∅
∈
V
→
∅
∈
Tarski
↔
∀
x
∈
∅
𝒫
x
⊆
∅
∧
𝒫
x
∈
∅
∧
∀
x
∈
𝒫
∅
x
≈
∅
∨
x
∈
∅
13
3
12
ax-mp
⊢
∅
∈
Tarski
↔
∀
x
∈
∅
𝒫
x
⊆
∅
∧
𝒫
x
∈
∅
∧
∀
x
∈
𝒫
∅
x
≈
∅
∨
x
∈
∅
14
1
11
13
mpbir2an
⊢
∅
∈
Tarski