Metamath Proof Explorer


Theorem 0vfval

Description: Value of the function for the zero vector on a normed complex vector space. (Contributed by NM, 24-Apr-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 0vfval.2 G = + v U
0vfval.5 Z = 0 vec U
Assertion 0vfval U V Z = GId G

Proof

Step Hyp Ref Expression
1 0vfval.2 G = + v U
2 0vfval.5 Z = 0 vec U
3 elex U V U V
4 fo1st 1 st : V onto V
5 fofn 1 st : V onto V 1 st Fn V
6 4 5 ax-mp 1 st Fn V
7 ssv ran 1 st V
8 fnco 1 st Fn V 1 st Fn V ran 1 st V 1 st 1 st Fn V
9 6 6 7 8 mp3an 1 st 1 st Fn V
10 df-va + v = 1 st 1 st
11 10 fneq1i + v Fn V 1 st 1 st Fn V
12 9 11 mpbir + v Fn V
13 fvco2 + v Fn V U V GId + v U = GId + v U
14 12 13 mpan U V GId + v U = GId + v U
15 df-0v 0 vec = GId + v
16 15 fveq1i 0 vec U = GId + v U
17 2 16 eqtri Z = GId + v U
18 1 fveq2i GId G = GId + v U
19 14 17 18 3eqtr4g U V Z = GId G
20 3 19 syl U V Z = GId G