Metamath Proof Explorer


Theorem 0vtxrgr

Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion 0vtxrgr G W Vtx G = k 0 * G RegGraph k

Proof

Step Hyp Ref Expression
1 simpr G W Vtx G = k 0 * k 0 *
2 rzal Vtx G = v Vtx G VtxDeg G v = k
3 2 ad2antlr G W Vtx G = k 0 * v Vtx G VtxDeg G v = k
4 eqid Vtx G = Vtx G
5 eqid VtxDeg G = VtxDeg G
6 4 5 isrgr G W k 0 * G RegGraph k k 0 * v Vtx G VtxDeg G v = k
7 6 adantlr G W Vtx G = k 0 * G RegGraph k k 0 * v Vtx G VtxDeg G v = k
8 1 3 7 mpbir2and G W Vtx G = k 0 * G RegGraph k
9 8 ralrimiva G W Vtx G = k 0 * G RegGraph k