Metamath Proof Explorer


Theorem 0vtxrusgr

Description: A graph with no vertices and an empty edge function is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion 0vtxrusgr G W Vtx G = iEdg G = k 0 * G RegUSGraph k

Proof

Step Hyp Ref Expression
1 usgr0v G W Vtx G = iEdg G = G USGraph
2 1 adantr G W Vtx G = iEdg G = k 0 * G USGraph
3 0vtxrgr G W Vtx G = v 0 * G RegGraph v
4 breq2 v = k G RegGraph v G RegGraph k
5 4 rspccv v 0 * G RegGraph v k 0 * G RegGraph k
6 3 5 syl G W Vtx G = k 0 * G RegGraph k
7 6 3adant3 G W Vtx G = iEdg G = k 0 * G RegGraph k
8 7 imp G W Vtx G = iEdg G = k 0 * G RegGraph k
9 isrusgr G W k 0 * G RegUSGraph k G USGraph G RegGraph k
10 9 3ad2antl1 G W Vtx G = iEdg G = k 0 * G RegUSGraph k G USGraph G RegGraph k
11 2 8 10 mpbir2and G W Vtx G = iEdg G = k 0 * G RegUSGraph k
12 11 ralrimiva G W Vtx G = iEdg G = k 0 * G RegUSGraph k