Metamath Proof Explorer


Theorem 0wlkonlem2

Description: Lemma 2 for 0wlkon and 0trlon . (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypothesis 0wlk.v V = Vtx G
Assertion 0wlkonlem2 P : 0 0 V P 0 = N P V 𝑝𝑚 0 0

Proof

Step Hyp Ref Expression
1 0wlk.v V = Vtx G
2 ovex 0 0 V
3 1 fvexi V V
4 simpl P : 0 0 V P 0 = N P : 0 0 V
5 fpmg 0 0 V V V P : 0 0 V P V 𝑝𝑚 0 0
6 2 3 4 5 mp3an12i P : 0 0 V P 0 = N P V 𝑝𝑚 0 0