Metamath Proof Explorer


Theorem 0wrd0

Description: The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018)

Ref Expression
Assertion 0wrd0 W Word W =

Proof

Step Hyp Ref Expression
1 wrdf W Word W : 0 ..^ W
2 f00 W : 0 ..^ W W = 0 ..^ W =
3 2 simplbi W : 0 ..^ W W =
4 1 3 syl W Word W =
5 wrd0 Word
6 eleq1 W = W Word Word
7 5 6 mpbiri W = W Word
8 4 7 impbii W Word W =