Metamath Proof Explorer


Theorem 11prm

Description: 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 11prm 11

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 1nn 1
3 1 2 decnncl 11
4 1lt10 1 < 10
5 2 1 1 4 declti 1 < 11
6 0nn0 0 0
7 2cn 2
8 7 mul02i 0 2 = 0
9 1e0p1 1 = 0 + 1
10 1 6 8 9 dec2dvds ¬ 2 11
11 3nn 3
12 3nn0 3 0
13 2nn 2
14 3t3e9 3 3 = 9
15 14 oveq1i 3 3 + 2 = 9 + 2
16 9p2e11 9 + 2 = 11
17 15 16 eqtri 3 3 + 2 = 11
18 2lt3 2 < 3
19 11 12 13 17 18 ndvdsi ¬ 3 11
20 2nn0 2 0
21 5nn0 5 0
22 1lt2 1 < 2
23 1 20 1 21 4 22 decltc 11 < 25
24 3 5 10 19 23 prmlem1 11