Metamath Proof Explorer


Theorem 1259lem1

Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 1 6 = 5 2 N + 6 8 == 6 8 and 2 ^ 1 7 == 6 8 x. 2 = 1 3 6 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)

Ref Expression
Hypothesis 1259prm.1 N = 1259
Assertion 1259lem1 2 17 mod N = 136 mod N

Proof

Step Hyp Ref Expression
1 1259prm.1 N = 1259
2 1nn0 1 0
3 2nn0 2 0
4 2 3 deccl 12 0
5 5nn0 5 0
6 4 5 deccl 125 0
7 9nn 9
8 6 7 decnncl 1259
9 1 8 eqeltri N
10 2nn 2
11 6nn0 6 0
12 2 11 deccl 16 0
13 0z 0
14 8nn0 8 0
15 11 14 deccl 68 0
16 3nn0 3 0
17 2 16 deccl 13 0
18 17 11 deccl 136 0
19 5 3 deccl 52 0
20 19 nn0zi 52
21 3 14 nn0expcli 2 8 0
22 eqid 2 8 mod N = 2 8 mod N
23 14 nn0cni 8
24 2cn 2
25 8t2e16 8 2 = 16
26 23 24 25 mulcomli 2 8 = 16
27 9nn0 9 0
28 eqid 68 = 68
29 4nn0 4 0
30 7nn0 7 0
31 29 30 deccl 47 0
32 eqid 125 = 125
33 0nn0 0 0
34 11 dec0h 6 = 06
35 eqid 47 = 47
36 4cn 4
37 36 addid2i 0 + 4 = 4
38 37 oveq1i 0 + 4 + 1 = 4 + 1
39 4p1e5 4 + 1 = 5
40 38 39 eqtri 0 + 4 + 1 = 5
41 7cn 7
42 6cn 6
43 7p6e13 7 + 6 = 13
44 41 42 43 addcomli 6 + 7 = 13
45 33 11 29 30 34 35 40 16 44 decaddc 6 + 47 = 53
46 3 11 deccl 26 0
47 eqid 12 = 12
48 5 dec0h 5 = 05
49 eqid 26 = 26
50 24 addid2i 0 + 2 = 2
51 50 oveq1i 0 + 2 + 1 = 2 + 1
52 2p1e3 2 + 1 = 3
53 51 52 eqtri 0 + 2 + 1 = 3
54 5cn 5
55 6p5e11 6 + 5 = 11
56 42 54 55 addcomli 5 + 6 = 11
57 33 5 3 11 48 49 53 2 56 decaddc 5 + 26 = 31
58 10nn0 10 0
59 eqid 52 = 52
60 58 nn0cni 10
61 3cn 3
62 dec10p 10 + 3 = 13
63 60 61 62 addcomli 3 + 10 = 13
64 54 mulid1i 5 1 = 5
65 1p0e1 1 + 0 = 1
66 64 65 oveq12i 5 1 + 1 + 0 = 5 + 1
67 5p1e6 5 + 1 = 6
68 66 67 eqtri 5 1 + 1 + 0 = 6
69 24 mulid1i 2 1 = 2
70 69 oveq1i 2 1 + 3 = 2 + 3
71 3p2e5 3 + 2 = 5
72 61 24 71 addcomli 2 + 3 = 5
73 70 72 48 3eqtri 2 1 + 3 = 05
74 5 3 2 16 59 63 2 5 33 68 73 decmac 52 1 + 3 + 10 = 65
75 2 dec0h 1 = 01
76 5t2e10 5 2 = 10
77 00id 0 + 0 = 0
78 76 77 oveq12i 5 2 + 0 + 0 = 10 + 0
79 dec10p 10 + 0 = 10
80 78 79 eqtri 5 2 + 0 + 0 = 10
81 2t2e4 2 2 = 4
82 81 oveq1i 2 2 + 1 = 4 + 1
83 82 39 48 3eqtri 2 2 + 1 = 05
84 5 3 33 2 59 75 3 5 33 80 83 decmac 52 2 + 1 = 105
85 2 3 16 2 47 57 19 5 58 74 84 decma2c 52 12 + 5 + 26 = 655
86 5t5e25 5 5 = 25
87 3 5 67 86 decsuc 5 5 + 1 = 26
88 54 24 76 mulcomli 2 5 = 10
89 61 addid2i 0 + 3 = 3
90 2 33 16 88 89 decaddi 2 5 + 3 = 13
91 5 3 16 59 5 16 2 87 90 decrmac 52 5 + 3 = 263
92 4 5 5 16 32 45 19 16 46 85 91 decma2c 52 125 + 6 + 47 = 6553
93 9cn 9
94 9t5e45 9 5 = 45
95 93 54 94 mulcomli 5 9 = 45
96 5p2e7 5 + 2 = 7
97 29 5 3 95 96 decaddi 5 9 + 2 = 47
98 9t2e18 9 2 = 18
99 93 24 98 mulcomli 2 9 = 18
100 1p1e2 1 + 1 = 2
101 8p8e16 8 + 8 = 16
102 2 14 14 99 100 11 101 decaddci 2 9 + 8 = 26
103 5 3 14 59 27 11 3 97 102 decrmac 52 9 + 8 = 476
104 6 27 11 14 1 28 19 11 31 92 103 decma2c 52 N + 68 = 65536
105 2exp16 2 16 = 65536
106 eqid 2 8 = 2 8
107 eqid 2 8 2 8 = 2 8 2 8
108 3 14 26 106 107 numexp2x 2 16 = 2 8 2 8
109 104 105 108 3eqtr2i 52 N + 68 = 2 8 2 8
110 9 10 14 20 21 15 22 26 109 mod2xi 2 16 mod N = 68 mod N
111 6p1e7 6 + 1 = 7
112 eqid 16 = 16
113 2 11 111 112 decsuc 16 + 1 = 17
114 18 nn0cni 136
115 114 addid2i 0 + 136 = 136
116 9 nncni N
117 116 mul02i 0 N = 0
118 117 oveq1i 0 N + 136 = 0 + 136
119 6t2e12 6 2 = 12
120 2 3 52 119 decsuc 6 2 + 1 = 13
121 3 11 14 28 11 2 120 25 decmul1c 68 2 = 136
122 115 118 121 3eqtr4i 0 N + 136 = 68 2
123 9 10 12 13 15 18 110 113 122 modxp1i 2 17 mod N = 136 mod N