Metamath Proof Explorer


Theorem 1259lem3

Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 8 = 2 ^ 3 4 x. 2 ^ 4 == 8 7 0 x. 1 6 = 1 1 N + 7 1 and 2 ^ 7 6 = ( 2 ^ 3 4 ) ^ 2 == 7 1 ^ 2 = 4 N + 5 == 5 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)

Ref Expression
Hypothesis 1259prm.1 N = 1259
Assertion 1259lem3 2 76 mod N = 5 mod N

Proof

Step Hyp Ref Expression
1 1259prm.1 N = 1259
2 1nn0 1 0
3 2nn0 2 0
4 2 3 deccl 12 0
5 5nn0 5 0
6 4 5 deccl 125 0
7 9nn 9
8 6 7 decnncl 1259
9 1 8 eqeltri N
10 2nn 2
11 3nn0 3 0
12 8nn0 8 0
13 11 12 deccl 38 0
14 4z 4
15 7nn0 7 0
16 15 2 deccl 71 0
17 4nn0 4 0
18 11 17 deccl 34 0
19 2 2 deccl 11 0
20 19 nn0zi 11
21 12 15 deccl 87 0
22 0nn0 0 0
23 21 22 deccl 870 0
24 6nn0 6 0
25 2 24 deccl 16 0
26 1 1259lem2 2 34 mod N = 870 mod N
27 2exp4 2 4 = 16
28 27 oveq1i 2 4 mod N = 16 mod N
29 eqid 34 = 34
30 4p4e8 4 + 4 = 8
31 11 17 17 29 30 decaddi 34 + 4 = 38
32 9nn0 9 0
33 eqid 71 = 71
34 10nn0 10 0
35 eqid 11 = 11
36 34 nn0cni 10
37 7cn 7
38 dec10p 10 + 7 = 17
39 36 37 38 addcomli 7 + 10 = 17
40 2 11 deccl 13 0
41 6 nn0cni 125
42 41 mulid2i 1 125 = 125
43 2 dec0h 1 = 01
44 eqid 13 = 13
45 0p1e1 0 + 1 = 1
46 3cn 3
47 ax-1cn 1
48 3p1e4 3 + 1 = 4
49 46 47 48 addcomli 1 + 3 = 4
50 22 2 2 11 43 44 45 49 decadd 1 + 13 = 14
51 2p1e3 2 + 1 = 3
52 eqid 12 = 12
53 2 3 51 52 decsuc 12 + 1 = 13
54 5p4e9 5 + 4 = 9
55 4 5 2 17 42 50 53 54 decadd 1 125 + 1 + 13 = 139
56 5cn 5
57 7p5e12 7 + 5 = 12
58 37 56 57 addcomli 5 + 7 = 12
59 4 5 15 42 53 3 58 decaddci 1 125 + 7 = 132
60 2 2 2 15 35 39 6 3 40 55 59 decmac 11 125 + 7 + 10 = 1392
61 9p1e10 9 + 1 = 10
62 9cn 9
63 19 nn0cni 11
64 9t11e99 9 11 = 99
65 62 63 64 mulcomli 11 9 = 99
66 32 61 65 decsucc 11 9 + 1 = 100
67 6 32 15 2 1 33 19 22 34 60 66 decma2c 11 N + 71 = 13920
68 eqid 16 = 16
69 5 3 deccl 52 0
70 69 3 deccl 522 0
71 eqid 870 = 870
72 eqid 522 = 522
73 eqid 87 = 87
74 69 nn0cni 52
75 74 addid1i 52 + 0 = 52
76 8cn 8
77 76 mulid1i 8 1 = 8
78 56 addid1i 5 + 0 = 5
79 77 78 oveq12i 8 1 + 5 + 0 = 8 + 5
80 8p5e13 8 + 5 = 13
81 79 80 eqtri 8 1 + 5 + 0 = 13
82 37 mulid1i 7 1 = 7
83 82 oveq1i 7 1 + 2 = 7 + 2
84 7p2e9 7 + 2 = 9
85 32 dec0h 9 = 09
86 83 84 85 3eqtri 7 1 + 2 = 09
87 12 15 5 3 73 75 2 32 22 81 86 decmac 87 1 + 52 + 0 = 139
88 47 mul02i 0 1 = 0
89 88 oveq1i 0 1 + 2 = 0 + 2
90 2cn 2
91 90 addid2i 0 + 2 = 2
92 3 dec0h 2 = 02
93 89 91 92 3eqtri 0 1 + 2 = 02
94 21 22 69 3 71 72 2 3 22 87 93 decmac 870 1 + 522 = 1392
95 8t6e48 8 6 = 48
96 4p1e5 4 + 1 = 5
97 8p4e12 8 + 4 = 12
98 17 12 17 95 96 3 97 decaddci 8 6 + 4 = 52
99 7t6e42 7 6 = 42
100 24 12 15 73 3 17 98 99 decmul1c 87 6 = 522
101 6cn 6
102 101 mul02i 0 6 = 0
103 24 21 22 71 100 102 decmul1 870 6 = 5220
104 23 2 24 68 22 70 94 103 decmul2c 870 16 = 13920
105 67 104 eqtr4i 11 N + 71 = 870 16
106 9 10 18 20 23 16 17 25 26 28 31 105 modxai 2 38 mod N = 71 mod N
107 eqid 38 = 38
108 3t2e6 3 2 = 6
109 46 90 108 mulcomli 2 3 = 6
110 109 oveq1i 2 3 + 1 = 6 + 1
111 6p1e7 6 + 1 = 7
112 110 111 eqtri 2 3 + 1 = 7
113 8t2e16 8 2 = 16
114 76 90 113 mulcomli 2 8 = 16
115 3 11 12 107 24 2 112 114 decmul2c 2 38 = 76
116 5 dec0h 5 = 05
117 eqid 125 = 125
118 4cn 4
119 118 addid2i 0 + 4 = 4
120 17 dec0h 4 = 04
121 119 120 eqtri 0 + 4 = 04
122 91 92 eqtri 0 + 2 = 02
123 118 mulid1i 4 1 = 4
124 123 45 oveq12i 4 1 + 0 + 1 = 4 + 1
125 124 96 eqtri 4 1 + 0 + 1 = 5
126 4t2e8 4 2 = 8
127 126 oveq1i 4 2 + 2 = 8 + 2
128 8p2e10 8 + 2 = 10
129 127 128 eqtri 4 2 + 2 = 10
130 2 3 22 3 52 122 17 22 2 125 129 decma2c 4 12 + 0 + 2 = 50
131 5t4e20 5 4 = 20
132 56 118 131 mulcomli 4 5 = 20
133 3 22 17 132 119 decaddi 4 5 + 4 = 24
134 4 5 22 17 117 121 17 17 3 130 133 decma2c 4 125 + 0 + 4 = 504
135 9t4e36 9 4 = 36
136 62 118 135 mulcomli 4 9 = 36
137 6p5e11 6 + 5 = 11
138 11 24 5 136 48 2 137 decaddci 4 9 + 5 = 41
139 6 32 22 5 1 116 17 2 17 134 138 decma2c 4 N + 5 = 5041
140 7t7e49 7 7 = 49
141 17 96 140 decsucc 7 7 + 1 = 50
142 37 mulid2i 1 7 = 7
143 142 oveq1i 1 7 + 7 = 7 + 7
144 7p7e14 7 + 7 = 14
145 143 144 eqtri 1 7 + 7 = 14
146 15 2 15 33 15 17 2 141 145 decrmac 71 7 + 7 = 504
147 16 nn0cni 71
148 147 mulid1i 71 1 = 71
149 16 15 2 33 2 15 146 148 decmul2c 71 71 = 5041
150 139 149 eqtr4i 4 N + 5 = 71 71
151 9 10 13 14 16 5 106 115 150 mod2xi 2 76 mod N = 5 mod N