Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 0 6 = ( 2 ^ 7 6 ) ^ 4 x. 4 == 5 ^ 4 x. 4 = 2 N - 1 8 , 2 ^ 6 1 2 = ( 2 ^ 3 0 6 ) ^ 2 == 1 8 ^ 2 = 3 2 4 , 2 ^ 6 2 9 = 2 ^ 6 1 2 x. 2 ^ 1 7 == 3 2 4 x. 1 3 6 = 3 5 N - 1 and finally 2 ^ ( N - 1 ) = ( 2 ^ 6 2 9 ) ^ 2 == 1 ^ 2 = 1 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1259prm.1 | ||
Assertion | 1259lem4 |