Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1259prm.1 | ||
Assertion | 1259prm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1259prm.1 | ||
2 | 37prm | ||
3 | 3nn0 | ||
4 | 4nn | ||
5 | 3 4 | decnncl | |
6 | 1nn0 | ||
7 | 2nn0 | ||
8 | 6 7 | deccl | |
9 | 5nn0 | ||
10 | 8 9 | deccl | |
11 | 8nn0 | ||
12 | 10 11 | deccl | |
13 | 12 | nn0cni | |
14 | ax-1cn | ||
15 | eqid | ||
16 | 8p1e9 | ||
17 | 10 11 6 15 16 | decaddi | |
18 | 1 17 | eqtr4i | |
19 | 13 14 18 | mvrraddi | |
20 | 4nn0 | ||
21 | 3 20 | deccl | |
22 | 7nn0 | ||
23 | eqid | ||
24 | 7 3 | deccl | |
25 | eqid | ||
26 | eqid | ||
27 | 3t3e9 | ||
28 | 2p1e3 | ||
29 | 27 28 | oveq12i | |
30 | 9p3e12 | ||
31 | 29 30 | eqtri | |
32 | 4t3e12 | ||
33 | 3cn | ||
34 | 2cn | ||
35 | 3p2e5 | ||
36 | 33 34 35 | addcomli | |
37 | 6 7 3 32 36 | decaddi | |
38 | 3 20 7 3 25 26 3 9 6 31 37 | decmac | |
39 | 7cn | ||
40 | 7t3e21 | ||
41 | 39 33 40 | mulcomli | |
42 | 1p2e3 | ||
43 | 7 6 7 41 42 | decaddi | |
44 | 4cn | ||
45 | 7t4e28 | ||
46 | 39 44 45 | mulcomli | |
47 | 22 3 20 25 11 7 43 46 | decmul1c | |
48 | 21 3 22 23 11 24 38 47 | decmul2c | |
49 | 19 48 | eqtr4i | |
50 | 9nn0 | ||
51 | 10 50 | deccl | |
52 | 1 51 | eqeltri | |
53 | 52 | nn0cni | |
54 | npcan | ||
55 | 53 14 54 | mp2an | |
56 | 55 | eqcomi | |
57 | 1nn | ||
58 | 2nn | ||
59 | 3 22 | deccl | |
60 | 59 | numexp1 | |
61 | 60 | oveq2i | |
62 | 49 61 | eqtr4i | |
63 | 7nn | ||
64 | 4lt7 | ||
65 | 3 20 63 64 | declt | |
66 | 65 60 | breqtrri | |
67 | 1 | 1259lem4 | |
68 | 1 | 1259lem5 | |
69 | 2 5 49 56 5 57 58 62 66 67 68 | pockthi |