Metamath Proof Explorer


Theorem 139prm

Description: 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 139prm 139

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 3nn0 3 0
3 1 2 deccl 13 0
4 9nn 9
5 3 4 decnncl 139
6 8nn0 8 0
7 4nn0 4 0
8 9nn0 9 0
9 1lt8 1 < 8
10 3lt10 3 < 10
11 9lt10 9 < 10
12 1 6 2 7 8 1 9 10 11 3decltc 139 < 841
13 3nn 3
14 1 13 decnncl 13
15 1lt10 1 < 10
16 14 8 1 15 declti 1 < 139
17 4t2e8 4 2 = 8
18 df-9 9 = 8 + 1
19 3 7 17 18 dec2dvds ¬ 2 139
20 6nn0 6 0
21 7 20 deccl 46 0
22 1nn 1
23 0nn0 0 0
24 eqid 46 = 46
25 1 dec0h 1 = 01
26 ax-1cn 1
27 26 addid2i 0 + 1 = 1
28 27 oveq2i 3 4 + 0 + 1 = 3 4 + 1
29 2nn0 2 0
30 2p1e3 2 + 1 = 3
31 7 nn0cni 4
32 3cn 3
33 4t3e12 4 3 = 12
34 31 32 33 mulcomli 3 4 = 12
35 1 29 30 34 decsuc 3 4 + 1 = 13
36 28 35 eqtri 3 4 + 0 + 1 = 13
37 8p1e9 8 + 1 = 9
38 20 nn0cni 6
39 6t3e18 6 3 = 18
40 38 32 39 mulcomli 3 6 = 18
41 1 6 37 40 decsuc 3 6 + 1 = 19
42 7 20 23 1 24 25 2 8 1 36 41 decma2c 3 46 + 1 = 139
43 1lt3 1 < 3
44 13 21 22 42 43 ndvdsi ¬ 3 139
45 4nn 4
46 4lt5 4 < 5
47 5p4e9 5 + 4 = 9
48 3 45 46 47 dec5dvds2 ¬ 5 139
49 7nn 7
50 1 8 deccl 19 0
51 6nn 6
52 eqid 19 = 19
53 20 dec0h 6 = 06
54 7nn0 7 0
55 7cn 7
56 55 mulid1i 7 1 = 7
57 38 addid2i 0 + 6 = 6
58 56 57 oveq12i 7 1 + 0 + 6 = 7 + 6
59 7p6e13 7 + 6 = 13
60 58 59 eqtri 7 1 + 0 + 6 = 13
61 9cn 9
62 9t7e63 9 7 = 63
63 61 55 62 mulcomli 7 9 = 63
64 6p3e9 6 + 3 = 9
65 38 32 64 addcomli 3 + 6 = 9
66 20 2 20 63 65 decaddi 7 9 + 6 = 69
67 1 8 23 20 52 53 54 8 20 60 66 decma2c 7 19 + 6 = 139
68 6lt7 6 < 7
69 49 50 51 67 68 ndvdsi ¬ 7 139
70 1 22 decnncl 11
71 1 29 deccl 12 0
72 eqid 12 = 12
73 54 dec0h 7 = 07
74 1 1 deccl 11 0
75 2cn 2
76 75 addid2i 0 + 2 = 2
77 76 oveq2i 11 1 + 0 + 2 = 11 1 + 2
78 70 nncni 11
79 78 mulid1i 11 1 = 11
80 1p2e3 1 + 2 = 3
81 1 1 29 79 80 decaddi 11 1 + 2 = 13
82 77 81 eqtri 11 1 + 0 + 2 = 13
83 eqid 11 = 11
84 75 mulid2i 1 2 = 2
85 00id 0 + 0 = 0
86 84 85 oveq12i 1 2 + 0 + 0 = 2 + 0
87 75 addid1i 2 + 0 = 2
88 86 87 eqtri 1 2 + 0 + 0 = 2
89 84 oveq1i 1 2 + 7 = 2 + 7
90 7p2e9 7 + 2 = 9
91 55 75 90 addcomli 2 + 7 = 9
92 8 dec0h 9 = 09
93 89 91 92 3eqtri 1 2 + 7 = 09
94 1 1 23 54 83 73 29 8 23 88 93 decmac 11 2 + 7 = 29
95 1 29 23 54 72 73 74 8 29 82 94 decma2c 11 12 + 7 = 139
96 7lt10 7 < 10
97 22 1 54 96 declti 7 < 11
98 70 71 49 95 97 ndvdsi ¬ 11 139
99 10nn0 10 0
100 eqid 10 = 10
101 eqid 13 = 13
102 23 dec0h 0 = 00
103 85 102 eqtri 0 + 0 = 00
104 26 mulid1i 1 1 = 1
105 104 85 oveq12i 1 1 + 0 + 0 = 1 + 0
106 26 addid1i 1 + 0 = 1
107 105 106 eqtri 1 1 + 0 + 0 = 1
108 32 mulid1i 3 1 = 3
109 108 oveq1i 3 1 + 0 = 3 + 0
110 32 addid1i 3 + 0 = 3
111 2 dec0h 3 = 03
112 109 110 111 3eqtri 3 1 + 0 = 03
113 1 2 23 23 101 103 1 2 23 107 112 decmac 13 1 + 0 + 0 = 13
114 3 nn0cni 13
115 114 mul01i 13 0 = 0
116 115 oveq1i 13 0 + 9 = 0 + 9
117 61 addid2i 0 + 9 = 9
118 116 117 92 3eqtri 13 0 + 9 = 09
119 1 23 23 8 100 92 3 8 23 113 118 decma2c 13 10 + 9 = 139
120 22 2 8 11 declti 9 < 13
121 14 99 4 119 120 ndvdsi ¬ 13 139
122 1 49 decnncl 17
123 eqid 17 = 17
124 5nn0 5 0
125 8cn 8
126 125 mulid2i 1 8 = 8
127 5cn 5
128 127 addid2i 0 + 5 = 5
129 126 128 oveq12i 1 8 + 0 + 5 = 8 + 5
130 8p5e13 8 + 5 = 13
131 129 130 eqtri 1 8 + 0 + 5 = 13
132 8t7e56 8 7 = 56
133 125 55 132 mulcomli 7 8 = 56
134 124 20 2 133 64 decaddi 7 8 + 3 = 59
135 1 54 23 2 123 111 6 8 124 131 134 decmac 17 8 + 3 = 139
136 22 54 2 10 declti 3 < 17
137 122 6 13 135 136 ndvdsi ¬ 17 139
138 1 4 decnncl 19
139 55 mulid2i 1 7 = 7
140 139 57 oveq12i 1 7 + 0 + 6 = 7 + 6
141 140 59 eqtri 1 7 + 0 + 6 = 13
142 20 2 20 62 65 decaddi 9 7 + 6 = 69
143 1 8 23 20 52 53 54 8 20 141 142 decmac 19 7 + 6 = 139
144 6lt10 6 < 10
145 22 8 20 144 declti 6 < 19
146 138 54 51 143 145 ndvdsi ¬ 19 139
147 29 13 decnncl 23
148 eqid 23 = 23
149 6t2e12 6 2 = 12
150 38 75 149 mulcomli 2 6 = 12
151 1 29 30 150 decsuc 2 6 + 1 = 13
152 29 2 1 148 20 8 1 151 41 decrmac 23 6 + 1 = 139
153 2nn 2
154 153 2 1 15 declti 1 < 23
155 147 20 22 152 154 ndvdsi ¬ 23 139
156 5 12 16 19 44 48 69 98 121 137 146 155 prmlem2 139