Metamath Proof Explorer


Theorem 13prm

Description: 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 13prm 13

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 3nn 3
3 1 2 decnncl 13
4 1nn 1
5 3nn0 3 0
6 1lt10 1 < 10
7 4 5 1 6 declti 1 < 13
8 2cn 2
9 8 mulid2i 1 2 = 2
10 df-3 3 = 2 + 1
11 1 1 9 10 dec2dvds ¬ 2 13
12 4nn0 4 0
13 2nn0 2 0
14 2p1e3 2 + 1 = 3
15 4cn 4
16 3cn 3
17 4t3e12 4 3 = 12
18 15 16 17 mulcomli 3 4 = 12
19 1 13 14 18 decsuc 3 4 + 1 = 13
20 1lt3 1 < 3
21 2 12 4 19 20 ndvdsi ¬ 3 13
22 5nn0 5 0
23 3lt10 3 < 10
24 1lt2 1 < 2
25 1 13 5 22 23 24 decltc 13 < 25
26 3 7 11 21 25 prmlem1 13