Metamath Proof Explorer


Theorem 163prm

Description: 163 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 163prm 163

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 6nn0 6 0
3 1 2 deccl 16 0
4 3nn 3
5 3 4 decnncl 163
6 8nn0 8 0
7 4nn0 4 0
8 3nn0 3 0
9 1lt8 1 < 8
10 6lt10 6 < 10
11 3lt10 3 < 10
12 1 6 2 7 8 1 9 10 11 3decltc 163 < 841
13 6nn 6
14 1 13 decnncl 16
15 1lt10 1 < 10
16 14 8 1 15 declti 1 < 163
17 2cn 2
18 17 mulid2i 1 2 = 2
19 df-3 3 = 2 + 1
20 3 1 18 19 dec2dvds ¬ 2 163
21 5nn0 5 0
22 21 7 deccl 54 0
23 1nn 1
24 0nn0 0 0
25 eqid 54 = 54
26 1 dec0h 1 = 01
27 ax-1cn 1
28 27 addid2i 0 + 1 = 1
29 28 oveq2i 3 5 + 0 + 1 = 3 5 + 1
30 5p1e6 5 + 1 = 6
31 5cn 5
32 3cn 3
33 5t3e15 5 3 = 15
34 31 32 33 mulcomli 3 5 = 15
35 1 21 30 34 decsuc 3 5 + 1 = 16
36 29 35 eqtri 3 5 + 0 + 1 = 16
37 2nn0 2 0
38 2p1e3 2 + 1 = 3
39 4cn 4
40 4t3e12 4 3 = 12
41 39 32 40 mulcomli 3 4 = 12
42 1 37 38 41 decsuc 3 4 + 1 = 13
43 21 7 24 1 25 26 8 8 1 36 42 decma2c 3 54 + 1 = 163
44 1lt3 1 < 3
45 4 22 23 43 44 ndvdsi ¬ 3 163
46 3lt5 3 < 5
47 3 4 46 dec5dvds ¬ 5 163
48 7nn 7
49 37 8 deccl 23 0
50 2nn 2
51 eqid 23 = 23
52 37 dec0h 2 = 02
53 7nn0 7 0
54 17 addid2i 0 + 2 = 2
55 54 oveq2i 7 2 + 0 + 2 = 7 2 + 2
56 7t2e14 7 2 = 14
57 4p2e6 4 + 2 = 6
58 1 7 37 56 57 decaddi 7 2 + 2 = 16
59 55 58 eqtri 7 2 + 0 + 2 = 16
60 7t3e21 7 3 = 21
61 1p2e3 1 + 2 = 3
62 37 1 37 60 61 decaddi 7 3 + 2 = 23
63 37 8 24 37 51 52 53 8 37 59 62 decma2c 7 23 + 2 = 163
64 2lt7 2 < 7
65 48 49 50 63 64 ndvdsi ¬ 7 163
66 1 23 decnncl 11
67 1 7 deccl 14 0
68 9nn 9
69 9nn0 9 0
70 eqid 14 = 14
71 69 dec0h 9 = 09
72 1 1 deccl 11 0
73 31 addid2i 0 + 5 = 5
74 73 oveq2i 11 1 + 0 + 5 = 11 1 + 5
75 66 nncni 11
76 75 mulid1i 11 1 = 11
77 31 27 30 addcomli 1 + 5 = 6
78 1 1 21 76 77 decaddi 11 1 + 5 = 16
79 74 78 eqtri 11 1 + 0 + 5 = 16
80 eqid 11 = 11
81 39 mulid2i 1 4 = 4
82 81 28 oveq12i 1 4 + 0 + 1 = 4 + 1
83 4p1e5 4 + 1 = 5
84 82 83 eqtri 1 4 + 0 + 1 = 5
85 81 oveq1i 1 4 + 9 = 4 + 9
86 9cn 9
87 9p4e13 9 + 4 = 13
88 86 39 87 addcomli 4 + 9 = 13
89 85 88 eqtri 1 4 + 9 = 13
90 1 1 24 69 80 71 7 8 1 84 89 decmac 11 4 + 9 = 53
91 1 7 24 69 70 71 72 8 21 79 90 decma2c 11 14 + 9 = 163
92 9lt10 9 < 10
93 23 1 69 92 declti 9 < 11
94 66 67 68 91 93 ndvdsi ¬ 11 163
95 1 4 decnncl 13
96 1 37 deccl 12 0
97 eqid 12 = 12
98 53 dec0h 7 = 07
99 1 8 deccl 13 0
100 eqid 13 = 13
101 32 addid2i 0 + 3 = 3
102 8 dec0h 3 = 03
103 101 102 eqtri 0 + 3 = 03
104 27 mulid1i 1 1 = 1
105 00id 0 + 0 = 0
106 104 105 oveq12i 1 1 + 0 + 0 = 1 + 0
107 27 addid1i 1 + 0 = 1
108 106 107 eqtri 1 1 + 0 + 0 = 1
109 32 mulid1i 3 1 = 3
110 109 oveq1i 3 1 + 3 = 3 + 3
111 3p3e6 3 + 3 = 6
112 110 111 eqtri 3 1 + 3 = 6
113 2 dec0h 6 = 06
114 112 113 eqtri 3 1 + 3 = 06
115 1 8 24 8 100 103 1 2 24 108 114 decmac 13 1 + 0 + 3 = 16
116 18 28 oveq12i 1 2 + 0 + 1 = 2 + 1
117 116 38 eqtri 1 2 + 0 + 1 = 3
118 3t2e6 3 2 = 6
119 118 oveq1i 3 2 + 7 = 6 + 7
120 7cn 7
121 6cn 6
122 7p6e13 7 + 6 = 13
123 120 121 122 addcomli 6 + 7 = 13
124 119 123 eqtri 3 2 + 7 = 13
125 1 8 24 53 100 98 37 8 1 117 124 decmac 13 2 + 7 = 33
126 1 37 24 53 97 98 99 8 8 115 125 decma2c 13 12 + 7 = 163
127 7lt10 7 < 10
128 23 8 53 127 declti 7 < 13
129 95 96 48 126 128 ndvdsi ¬ 13 163
130 1 48 decnncl 17
131 10nn 10
132 eqid 17 = 17
133 eqid 10 = 10
134 86 mulid2i 1 9 = 9
135 6p1e7 6 + 1 = 7
136 121 27 135 addcomli 1 + 6 = 7
137 134 136 oveq12i 1 9 + 1 + 6 = 9 + 7
138 9p7e16 9 + 7 = 16
139 137 138 eqtri 1 9 + 1 + 6 = 16
140 9t7e63 9 7 = 63
141 86 120 140 mulcomli 7 9 = 63
142 141 oveq1i 7 9 + 0 = 63 + 0
143 2 8 deccl 63 0
144 143 nn0cni 63
145 144 addid1i 63 + 0 = 63
146 142 145 eqtri 7 9 + 0 = 63
147 1 53 1 24 132 133 69 8 2 139 146 decmac 17 9 + 10 = 163
148 7pos 0 < 7
149 1 24 48 148 declt 10 < 17
150 130 69 131 147 149 ndvdsi ¬ 17 163
151 1 68 decnncl 19
152 eqid 19 = 19
153 8cn 8
154 153 mulid2i 1 8 = 8
155 7p1e8 7 + 1 = 8
156 120 27 155 addcomli 1 + 7 = 8
157 154 156 oveq12i 1 8 + 1 + 7 = 8 + 8
158 8p8e16 8 + 8 = 16
159 157 158 eqtri 1 8 + 1 + 7 = 16
160 9t8e72 9 8 = 72
161 53 37 38 160 decsuc 9 8 + 1 = 73
162 1 69 1 1 152 80 6 8 53 159 161 decmac 19 8 + 11 = 163
163 1lt9 1 < 9
164 1 1 68 163 declt 11 < 19
165 151 6 66 162 164 ndvdsi ¬ 19 163
166 37 4 decnncl 23
167 120 17 56 mulcomli 2 7 = 14
168 1 7 37 167 57 decaddi 2 7 + 2 = 16
169 120 32 60 mulcomli 3 7 = 21
170 37 1 37 169 61 decaddi 3 7 + 2 = 23
171 37 8 37 51 53 8 37 168 170 decrmac 23 7 + 2 = 163
172 2lt10 2 < 10
173 50 8 37 172 declti 2 < 23
174 166 53 50 171 173 ndvdsi ¬ 23 163
175 5 12 16 20 45 47 65 94 129 150 165 174 prmlem2 163