Metamath Proof Explorer


Theorem 17prm

Description: 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 17prm 17

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 7nn 7
3 1 2 decnncl 17
4 1nn 1
5 7nn0 7 0
6 1lt10 1 < 10
7 4 5 1 6 declti 1 < 17
8 3nn0 3 0
9 3t2e6 3 2 = 6
10 df-7 7 = 6 + 1
11 1 8 9 10 dec2dvds ¬ 2 17
12 3nn 3
13 5nn0 5 0
14 2nn 2
15 2nn0 2 0
16 5cn 5
17 3cn 3
18 5t3e15 5 3 = 15
19 16 17 18 mulcomli 3 5 = 15
20 5p2e7 5 + 2 = 7
21 1 13 15 19 20 decaddi 3 5 + 2 = 17
22 2lt3 2 < 3
23 12 13 14 21 22 ndvdsi ¬ 3 17
24 7lt10 7 < 10
25 1lt2 1 < 2
26 1 15 5 13 24 25 decltc 17 < 25
27 3 7 11 23 26 prmlem1 17