Metamath Proof Explorer


Theorem 19.23v

Description: Version of 19.23 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020) Remove dependency on ax-6 . (Revised by Rohan Ridenour, 15-Apr-2022)

Ref Expression
Assertion 19.23v x φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 exim x φ ψ x φ x ψ
2 ax5e x ψ ψ
3 1 2 syl6 x φ ψ x φ ψ
4 ax-5 ψ x ψ
5 4 imim2i x φ ψ x φ x ψ
6 19.38 x φ x ψ x φ ψ
7 5 6 syl x φ ψ x φ ψ
8 3 7 impbii x φ ψ x φ ψ