Metamath Proof Explorer


Theorem 19.23vv

Description: Theorem 19.23v extended to two variables. (Contributed by NM, 10-Aug-2004)

Ref Expression
Assertion 19.23vv x y φ ψ x y φ ψ

Proof

Step Hyp Ref Expression
1 19.23v y φ ψ y φ ψ
2 1 albii x y φ ψ x y φ ψ
3 19.23v x y φ ψ x y φ ψ
4 2 3 bitri x y φ ψ x y φ ψ