Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
19.26-2
Next ⟩
19.26-3an
Metamath Proof Explorer
Ascii
Unicode
Theorem
19.26-2
Description:
Theorem
19.26
with two quantifiers.
(Contributed by
NM
, 3-Feb-2005)
Ref
Expression
Assertion
19.26-2
⊢
∀
x
∀
y
φ
∧
ψ
↔
∀
x
∀
y
φ
∧
∀
x
∀
y
ψ
Proof
Step
Hyp
Ref
Expression
1
19.26
⊢
∀
y
φ
∧
ψ
↔
∀
y
φ
∧
∀
y
ψ
2
1
albii
⊢
∀
x
∀
y
φ
∧
ψ
↔
∀
x
∀
y
φ
∧
∀
y
ψ
3
19.26
⊢
∀
x
∀
y
φ
∧
∀
y
ψ
↔
∀
x
∀
y
φ
∧
∀
x
∀
y
ψ
4
2
3
bitri
⊢
∀
x
∀
y
φ
∧
ψ
↔
∀
x
∀
y
φ
∧
∀
x
∀
y
ψ