Metamath Proof Explorer


Theorem 19.26-3an

Description: Theorem 19.26 with triple conjunction. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion 19.26-3an x φ ψ χ x φ x ψ x χ

Proof

Step Hyp Ref Expression
1 19.26 x φ ψ x φ x ψ
2 1 anbi1i x φ ψ x χ x φ x ψ x χ
3 df-3an φ ψ χ φ ψ χ
4 3 albii x φ ψ χ x φ ψ χ
5 19.26 x φ ψ χ x φ ψ x χ
6 4 5 bitri x φ ψ χ x φ ψ x χ
7 df-3an x φ x ψ x χ x φ x ψ x χ
8 2 6 7 3bitr4i x φ ψ χ x φ x ψ x χ