Metamath Proof Explorer


Theorem 19.28v

Description: Version of 19.28 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 25-Mar-2004)

Ref Expression
Assertion 19.28v x φ ψ φ x ψ

Proof

Step Hyp Ref Expression
1 19.26 x φ ψ x φ x ψ
2 19.3v x φ φ
3 2 anbi1i x φ x ψ φ x ψ
4 1 3 bitri x φ ψ φ x ψ