Metamath Proof Explorer


Theorem 19.32v

Description: Version of 19.32 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020)

Ref Expression
Assertion 19.32v x φ ψ φ x ψ

Proof

Step Hyp Ref Expression
1 19.21v x ¬ φ ψ ¬ φ x ψ
2 df-or φ ψ ¬ φ ψ
3 2 albii x φ ψ x ¬ φ ψ
4 df-or φ x ψ ¬ φ x ψ
5 1 3 4 3bitr4i x φ ψ φ x ψ