Metamath Proof Explorer


Theorem 19.33b

Description: The antecedent provides a condition implying the converse of 19.33 . (Contributed by NM, 27-Mar-2004) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 5-Jul-2014)

Ref Expression
Assertion 19.33b ¬ x φ x ψ x φ ψ x φ x ψ

Proof

Step Hyp Ref Expression
1 ianor ¬ x φ x ψ ¬ x φ ¬ x ψ
2 alnex x ¬ φ ¬ x φ
3 pm2.53 φ ψ ¬ φ ψ
4 3 al2imi x φ ψ x ¬ φ x ψ
5 2 4 syl5bir x φ ψ ¬ x φ x ψ
6 olc x ψ x φ x ψ
7 5 6 syl6com ¬ x φ x φ ψ x φ x ψ
8 19.30 x φ ψ x φ x ψ
9 8 orcomd x φ ψ x ψ x φ
10 9 ord x φ ψ ¬ x ψ x φ
11 orc x φ x φ x ψ
12 10 11 syl6com ¬ x ψ x φ ψ x φ x ψ
13 7 12 jaoi ¬ x φ ¬ x ψ x φ ψ x φ x ψ
14 1 13 sylbi ¬ x φ x ψ x φ ψ x φ x ψ
15 19.33 x φ x ψ x φ ψ
16 14 15 impbid1 ¬ x φ x ψ x φ ψ x φ x ψ