Metamath Proof Explorer


Theorem 19.35

Description: Theorem 19.35 of Margaris p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 27-Jun-2014)

Ref Expression
Assertion 19.35 x φ ψ x φ x ψ

Proof

Step Hyp Ref Expression
1 pm2.27 φ φ ψ ψ
2 1 aleximi x φ x φ ψ x ψ
3 2 com12 x φ ψ x φ x ψ
4 exnal x ¬ φ ¬ x φ
5 pm2.21 ¬ φ φ ψ
6 5 eximi x ¬ φ x φ ψ
7 4 6 sylbir ¬ x φ x φ ψ
8 exa1 x ψ x φ ψ
9 7 8 ja x φ x ψ x φ ψ
10 3 9 impbii x φ ψ x φ x ψ