Metamath Proof Explorer


Theorem 19.36imvOLD

Description: Obsolete version of 19.36imv as of 22-Sep-2024. (Contributed by Rohan Ridenour, 16-Apr-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 19.36imvOLD x φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 19.35 x φ ψ x φ x ψ
2 1 biimpi x φ ψ x φ x ψ
3 ax5e x ψ ψ
4 2 3 syl6 x φ ψ x φ ψ