Metamath Proof Explorer


Theorem 19.38a

Description: Under a nonfreeness hypothesis, the implication 19.38 can be strengthened to an equivalence. See also 19.38b . (Contributed by BJ, 3-Nov-2021) (Proof shortened by Wolf Lammen, 9-Jul-2022)

Ref Expression
Assertion 19.38a x φ x φ x ψ x φ ψ

Proof

Step Hyp Ref Expression
1 19.38 x φ x ψ x φ ψ
2 id x φ x φ
3 2 nfrd x φ x φ x φ
4 alim x φ ψ x φ x ψ
5 3 4 syl9 x φ x φ ψ x φ x ψ
6 1 5 impbid2 x φ x φ x ψ x φ ψ