Metamath Proof Explorer


Theorem 19.38b

Description: Under a nonfreeness hypothesis, the implication 19.38 can be strengthened to an equivalence. See also 19.38a . (Contributed by BJ, 3-Nov-2021) (Proof shortened by Wolf Lammen, 9-Jul-2022)

Ref Expression
Assertion 19.38b x ψ x φ x ψ x φ ψ

Proof

Step Hyp Ref Expression
1 19.38 x φ x ψ x φ ψ
2 exim x φ ψ x φ x ψ
3 id x ψ x ψ
4 3 nfrd x ψ x ψ x ψ
5 2 4 syl9r x ψ x φ ψ x φ x ψ
6 1 5 impbid2 x ψ x φ x ψ x φ ψ