Metamath Proof Explorer


Theorem 19.40b

Description: The antecedent provides a condition implying the converse of 19.40 . This is to 19.40 what 19.33b is to 19.33 . (Contributed by BJ, 6-May-2019) (Proof shortened by Wolf Lammen, 13-Nov-2020)

Ref Expression
Assertion 19.40b x φ x ψ x φ x ψ x φ ψ

Proof

Step Hyp Ref Expression
1 pm3.21 ψ φ φ ψ
2 1 aleximi x ψ x φ x φ ψ
3 pm3.2 φ ψ φ ψ
4 3 aleximi x φ x ψ x φ ψ
5 2 4 jaoa x ψ x φ x φ x ψ x φ ψ
6 5 orcoms x φ x ψ x φ x ψ x φ ψ
7 19.40 x φ ψ x φ x ψ
8 6 7 impbid1 x φ x ψ x φ x ψ x φ ψ