Metamath Proof Explorer


Theorem 19.41vv

Description: Version of 19.41 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995)

Ref Expression
Assertion 19.41vv x y φ ψ x y φ ψ

Proof

Step Hyp Ref Expression
1 19.41v y φ ψ y φ ψ
2 1 exbii x y φ ψ x y φ ψ
3 19.41v x y φ ψ x y φ ψ
4 2 3 bitri x y φ ψ x y φ ψ