Metamath Proof Explorer


Theorem 19.41vvv

Description: Version of 19.41 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995)

Ref Expression
Assertion 19.41vvv x y z φ ψ x y z φ ψ

Proof

Step Hyp Ref Expression
1 19.41vv y z φ ψ y z φ ψ
2 1 exbii x y z φ ψ x y z φ ψ
3 19.41v x y z φ ψ x y z φ ψ
4 2 3 bitri x y z φ ψ x y z φ ψ