Metamath Proof Explorer


Theorem 19.41vvvv

Description: Version of 19.41 with four quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by FL, 14-Jul-2007)

Ref Expression
Assertion 19.41vvvv w x y z φ ψ w x y z φ ψ

Proof

Step Hyp Ref Expression
1 19.41vvv x y z φ ψ x y z φ ψ
2 1 exbii w x y z φ ψ w x y z φ ψ
3 19.41v w x y z φ ψ w x y z φ ψ
4 2 3 bitri w x y z φ ψ w x y z φ ψ