Metamath Proof Explorer


Theorem 19.42vvv

Description: Version of 19.42 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Sep-2011) (Proof shortened by Wolf Lammen, 27-Aug-2023)

Ref Expression
Assertion 19.42vvv x y z φ ψ φ x y z ψ

Proof

Step Hyp Ref Expression
1 exdistr2 x y z φ ψ x φ y z ψ
2 19.42v x φ y z ψ φ x y z ψ
3 1 2 bitri x y z φ ψ φ x y z ψ