Metamath Proof Explorer


Theorem 19.43OLD

Description: Obsolete proof of 19.43 . Do not delete as it is referenced on the mmrecent.html page and in conventions-labels . (Contributed by NM, 5-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 19.43OLD x φ ψ x φ x ψ

Proof

Step Hyp Ref Expression
1 ioran ¬ φ ψ ¬ φ ¬ ψ
2 1 albii x ¬ φ ψ x ¬ φ ¬ ψ
3 19.26 x ¬ φ ¬ ψ x ¬ φ x ¬ ψ
4 alnex x ¬ φ ¬ x φ
5 alnex x ¬ ψ ¬ x ψ
6 4 5 anbi12i x ¬ φ x ¬ ψ ¬ x φ ¬ x ψ
7 2 3 6 3bitri x ¬ φ ψ ¬ x φ ¬ x ψ
8 7 notbii ¬ x ¬ φ ψ ¬ ¬ x φ ¬ x ψ
9 df-ex x φ ψ ¬ x ¬ φ ψ
10 oran x φ x ψ ¬ ¬ x φ ¬ x ψ
11 8 9 10 3bitr4i x φ ψ x φ x ψ