Metamath Proof Explorer


Theorem 19prm

Description: 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 19prm 19

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 9nn 9
3 1 2 decnncl 19
4 1nn 1
5 9nn0 9 0
6 1lt10 1 < 10
7 4 5 1 6 declti 1 < 19
8 4nn0 4 0
9 4t2e8 4 2 = 8
10 df-9 9 = 8 + 1
11 1 8 9 10 dec2dvds ¬ 2 19
12 3nn 3
13 6nn0 6 0
14 8nn0 8 0
15 8p1e9 8 + 1 = 9
16 6cn 6
17 3cn 3
18 6t3e18 6 3 = 18
19 16 17 18 mulcomli 3 6 = 18
20 1 14 15 19 decsuc 3 6 + 1 = 19
21 1lt3 1 < 3
22 12 13 4 20 21 ndvdsi ¬ 3 19
23 2nn0 2 0
24 5nn0 5 0
25 9lt10 9 < 10
26 1lt2 1 < 2
27 1 23 5 24 25 26 decltc 19 < 25
28 3 7 11 22 27 prmlem1 19