Metamath Proof Explorer


Theorem 1arith2

Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in ApostolNT p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 30-May-2014)

Ref Expression
Hypotheses 1arith.1 M = n p p pCnt n
1arith.2 R = e 0 | e -1 Fin
Assertion 1arith2 z ∃! g R M z = g

Proof

Step Hyp Ref Expression
1 1arith.1 M = n p p pCnt n
2 1arith.2 R = e 0 | e -1 Fin
3 1 2 1arith M : 1-1 onto R
4 f1ocnv M : 1-1 onto R M -1 : R 1-1 onto
5 3 4 ax-mp M -1 : R 1-1 onto
6 f1ofveu M -1 : R 1-1 onto z ∃! g R M -1 g = z
7 5 6 mpan z ∃! g R M -1 g = z
8 f1ocnvfvb M : 1-1 onto R z g R M z = g M -1 g = z
9 3 8 mp3an1 z g R M z = g M -1 g = z
10 9 reubidva z ∃! g R M z = g ∃! g R M -1 g = z
11 7 10 mpbird z ∃! g R M z = g
12 11 rgen z ∃! g R M z = g