Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Fundamental theorem of arithmetic
1arithlem1
Next ⟩
1arithlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
1arithlem1
Description:
Lemma for
1arith
.
(Contributed by
Mario Carneiro
, 30-May-2014)
Ref
Expression
Hypothesis
1arith.1
⊢
M
=
n
∈
ℕ
⟼
p
∈
ℙ
⟼
p
pCnt
n
Assertion
1arithlem1
⊢
N
∈
ℕ
→
M
⁡
N
=
p
∈
ℙ
⟼
p
pCnt
N
Proof
Step
Hyp
Ref
Expression
1
1arith.1
⊢
M
=
n
∈
ℕ
⟼
p
∈
ℙ
⟼
p
pCnt
n
2
oveq2
⊢
n
=
N
→
p
pCnt
n
=
p
pCnt
N
3
2
mpteq2dv
⊢
n
=
N
→
p
∈
ℙ
⟼
p
pCnt
n
=
p
∈
ℙ
⟼
p
pCnt
N
4
prmex
⊢
ℙ
∈
V
5
4
mptex
⊢
p
∈
ℙ
⟼
p
pCnt
N
∈
V
6
3
1
5
fvmpt
⊢
N
∈
ℕ
→
M
⁡
N
=
p
∈
ℙ
⟼
p
pCnt
N