Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Fundamental theorem of arithmetic
1arithlem2
Next ⟩
1arithlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
1arithlem2
Description:
Lemma for
1arith
.
(Contributed by
Mario Carneiro
, 30-May-2014)
Ref
Expression
Hypothesis
1arith.1
⊢
M
=
n
∈
ℕ
⟼
p
∈
ℙ
⟼
p
pCnt
n
Assertion
1arithlem2
⊢
N
∈
ℕ
∧
P
∈
ℙ
→
M
⁡
N
⁡
P
=
P
pCnt
N
Proof
Step
Hyp
Ref
Expression
1
1arith.1
⊢
M
=
n
∈
ℕ
⟼
p
∈
ℙ
⟼
p
pCnt
n
2
1
1arithlem1
⊢
N
∈
ℕ
→
M
⁡
N
=
p
∈
ℙ
⟼
p
pCnt
N
3
2
fveq1d
⊢
N
∈
ℕ
→
M
⁡
N
⁡
P
=
p
∈
ℙ
⟼
p
pCnt
N
⁡
P
4
oveq1
⊢
p
=
P
→
p
pCnt
N
=
P
pCnt
N
5
eqid
⊢
p
∈
ℙ
⟼
p
pCnt
N
=
p
∈
ℙ
⟼
p
pCnt
N
6
ovex
⊢
P
pCnt
N
∈
V
7
4
5
6
fvmpt
⊢
P
∈
ℙ
→
p
∈
ℙ
⟼
p
pCnt
N
⁡
P
=
P
pCnt
N
8
3
7
sylan9eq
⊢
N
∈
ℕ
∧
P
∈
ℙ
→
M
⁡
N
⁡
P
=
P
pCnt
N