Metamath Proof Explorer


Theorem 1arithlem2

Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)

Ref Expression
Hypothesis 1arith.1 M = n p p pCnt n
Assertion 1arithlem2 N P M N P = P pCnt N

Proof

Step Hyp Ref Expression
1 1arith.1 M = n p p pCnt n
2 1 1arithlem1 N M N = p p pCnt N
3 2 fveq1d N M N P = p p pCnt N P
4 oveq1 p = P p pCnt N = P pCnt N
5 eqid p p pCnt N = p p pCnt N
6 ovex P pCnt N V
7 4 5 6 fvmpt P p p pCnt N P = P pCnt N
8 3 7 sylan9eq N P M N P = P pCnt N