Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Fundamental theorem of arithmetic
1arithlem3
Next ⟩
1arithlem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
1arithlem3
Description:
Lemma for
1arith
.
(Contributed by
Mario Carneiro
, 30-May-2014)
Ref
Expression
Hypothesis
1arith.1
⊢
M
=
n
∈
ℕ
⟼
p
∈
ℙ
⟼
p
pCnt
n
Assertion
1arithlem3
⊢
N
∈
ℕ
→
M
⁡
N
:
ℙ
⟶
ℕ
0
Proof
Step
Hyp
Ref
Expression
1
1arith.1
⊢
M
=
n
∈
ℕ
⟼
p
∈
ℙ
⟼
p
pCnt
n
2
1
1arithlem1
⊢
N
∈
ℕ
→
M
⁡
N
=
p
∈
ℙ
⟼
p
pCnt
N
3
pccl
⊢
p
∈
ℙ
∧
N
∈
ℕ
→
p
pCnt
N
∈
ℕ
0
4
3
ancoms
⊢
N
∈
ℕ
∧
p
∈
ℙ
→
p
pCnt
N
∈
ℕ
0
5
2
4
fmpt3d
⊢
N
∈
ℕ
→
M
⁡
N
:
ℙ
⟶
ℕ
0