Step |
Hyp |
Ref |
Expression |
1 |
|
1arith.1 |
|
2 |
|
1arithlem4.2 |
|
3 |
|
1arithlem4.3 |
|
4 |
|
1arithlem4.4 |
|
5 |
|
1arithlem4.5 |
|
6 |
3
|
ffvelrnda |
|
7 |
6
|
ralrimiva |
|
8 |
2 7
|
pcmptcl |
|
9 |
8
|
simprd |
|
10 |
9 4
|
ffvelrnd |
|
11 |
1
|
1arithlem2 |
|
12 |
10 11
|
sylan |
|
13 |
7
|
adantr |
|
14 |
4
|
adantr |
|
15 |
|
simpr |
|
16 |
|
fveq2 |
|
17 |
2 13 14 15 16
|
pcmpt |
|
18 |
14
|
nnred |
|
19 |
|
prmz |
|
20 |
19
|
zred |
|
21 |
20
|
adantl |
|
22 |
5
|
anassrs |
|
23 |
22
|
ifeq2d |
|
24 |
|
ifid |
|
25 |
23 24
|
eqtr3di |
|
26 |
|
iftrue |
|
27 |
26
|
adantl |
|
28 |
18 21 25 27
|
lecasei |
|
29 |
12 17 28
|
3eqtrrd |
|
30 |
29
|
ralrimiva |
|
31 |
1
|
1arithlem3 |
|
32 |
10 31
|
syl |
|
33 |
|
ffn |
|
34 |
|
ffn |
|
35 |
|
eqfnfv |
|
36 |
33 34 35
|
syl2an |
|
37 |
3 32 36
|
syl2anc |
|
38 |
30 37
|
mpbird |
|
39 |
|
fveq2 |
|
40 |
39
|
rspceeqv |
|
41 |
10 38 40
|
syl2anc |
|