| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arith.1 |  | 
						
							| 2 |  | 1arithlem4.2 |  | 
						
							| 3 |  | 1arithlem4.3 |  | 
						
							| 4 |  | 1arithlem4.4 |  | 
						
							| 5 |  | 1arithlem4.5 |  | 
						
							| 6 | 3 | ffvelcdmda |  | 
						
							| 7 | 6 | ralrimiva |  | 
						
							| 8 | 2 7 | pcmptcl |  | 
						
							| 9 | 8 | simprd |  | 
						
							| 10 | 9 4 | ffvelcdmd |  | 
						
							| 11 | 1 | 1arithlem2 |  | 
						
							| 12 | 10 11 | sylan |  | 
						
							| 13 | 7 | adantr |  | 
						
							| 14 | 4 | adantr |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 |  | fveq2 |  | 
						
							| 17 | 2 13 14 15 16 | pcmpt |  | 
						
							| 18 | 14 | nnred |  | 
						
							| 19 |  | prmz |  | 
						
							| 20 | 19 | zred |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 | 5 | anassrs |  | 
						
							| 23 | 22 | ifeq2d |  | 
						
							| 24 |  | ifid |  | 
						
							| 25 | 23 24 | eqtr3di |  | 
						
							| 26 |  | iftrue |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 18 21 25 27 | lecasei |  | 
						
							| 29 | 12 17 28 | 3eqtrrd |  | 
						
							| 30 | 29 | ralrimiva |  | 
						
							| 31 | 1 | 1arithlem3 |  | 
						
							| 32 | 10 31 | syl |  | 
						
							| 33 |  | ffn |  | 
						
							| 34 |  | ffn |  | 
						
							| 35 |  | eqfnfv |  | 
						
							| 36 | 33 34 35 | syl2an |  | 
						
							| 37 | 3 32 36 | syl2anc |  | 
						
							| 38 | 30 37 | mpbird |  | 
						
							| 39 |  | fveq2 |  | 
						
							| 40 | 39 | rspceeqv |  | 
						
							| 41 | 10 38 40 | syl2anc |  |