Metamath Proof Explorer


Theorem 1conngr

Description: A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion 1conngr G W Vtx G = N G ConnGraph

Proof

Step Hyp Ref Expression
1 snidg N V N N
2 1 adantr N V G W Vtx G = N N N
3 eleq2 Vtx G = N N Vtx G N N
4 3 ad2antll N V G W Vtx G = N N Vtx G N N
5 2 4 mpbird N V G W Vtx G = N N Vtx G
6 eqid Vtx G = Vtx G
7 6 0pthonv N Vtx G f p f N PathsOn G N p
8 5 7 syl N V G W Vtx G = N f p f N PathsOn G N p
9 oveq2 n = N N PathsOn G n = N PathsOn G N
10 9 breqd n = N f N PathsOn G n p f N PathsOn G N p
11 10 2exbidv n = N f p f N PathsOn G n p f p f N PathsOn G N p
12 11 ralsng N V n N f p f N PathsOn G n p f p f N PathsOn G N p
13 12 adantr N V G W Vtx G = N n N f p f N PathsOn G n p f p f N PathsOn G N p
14 8 13 mpbird N V G W Vtx G = N n N f p f N PathsOn G n p
15 oveq1 k = N k PathsOn G n = N PathsOn G n
16 15 breqd k = N f k PathsOn G n p f N PathsOn G n p
17 16 2exbidv k = N f p f k PathsOn G n p f p f N PathsOn G n p
18 17 ralbidv k = N n N f p f k PathsOn G n p n N f p f N PathsOn G n p
19 18 ralsng N V k N n N f p f k PathsOn G n p n N f p f N PathsOn G n p
20 19 adantr N V G W Vtx G = N k N n N f p f k PathsOn G n p n N f p f N PathsOn G n p
21 14 20 mpbird N V G W Vtx G = N k N n N f p f k PathsOn G n p
22 raleq Vtx G = N n Vtx G f p f k PathsOn G n p n N f p f k PathsOn G n p
23 22 raleqbi1dv Vtx G = N k Vtx G n Vtx G f p f k PathsOn G n p k N n N f p f k PathsOn G n p
24 23 ad2antll N V G W Vtx G = N k Vtx G n Vtx G f p f k PathsOn G n p k N n N f p f k PathsOn G n p
25 21 24 mpbird N V G W Vtx G = N k Vtx G n Vtx G f p f k PathsOn G n p
26 6 isconngr G W G ConnGraph k Vtx G n Vtx G f p f k PathsOn G n p
27 26 ad2antrl N V G W Vtx G = N G ConnGraph k Vtx G n Vtx G f p f k PathsOn G n p
28 25 27 mpbird N V G W Vtx G = N G ConnGraph
29 28 ex N V G W Vtx G = N G ConnGraph
30 snprc ¬ N V N =
31 eqeq2 N = Vtx G = N Vtx G =
32 31 anbi2d N = G W Vtx G = N G W Vtx G =
33 0vconngr G W Vtx G = G ConnGraph
34 32 33 syl6bi N = G W Vtx G = N G ConnGraph
35 30 34 sylbi ¬ N V G W Vtx G = N G ConnGraph
36 29 35 pm2.61i G W Vtx G = N G ConnGraph