Metamath Proof Explorer


Theorem 1cubr

Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis 1cubr.r R = 1 - 1 + i 3 2 - 1 - i 3 2
Assertion 1cubr A R A A 3 = 1

Proof

Step Hyp Ref Expression
1 1cubr.r R = 1 - 1 + i 3 2 - 1 - i 3 2
2 ax-1cn 1
3 neg1cn 1
4 ax-icn i
5 3cn 3
6 sqrtcl 3 3
7 5 6 ax-mp 3
8 4 7 mulcli i 3
9 3 8 addcli - 1 + i 3
10 halfcl - 1 + i 3 - 1 + i 3 2
11 9 10 ax-mp - 1 + i 3 2
12 3 8 subcli - 1 - i 3
13 halfcl - 1 - i 3 - 1 - i 3 2
14 12 13 ax-mp - 1 - i 3 2
15 2 11 14 3pm3.2i 1 - 1 + i 3 2 - 1 - i 3 2
16 2 elexi 1 V
17 ovex - 1 + i 3 2 V
18 ovex - 1 - i 3 2 V
19 16 17 18 tpss 1 - 1 + i 3 2 - 1 - i 3 2 1 - 1 + i 3 2 - 1 - i 3 2
20 15 19 mpbi 1 - 1 + i 3 2 - 1 - i 3 2
21 1 20 eqsstri R
22 21 sseli A R A
23 22 pm4.71ri A R A A R
24 3nn 3
25 cxpeq A 3 1 A 3 = 1 n 0 3 1 A = 1 1 3 -1 2 3 n
26 24 2 25 mp3an23 A A 3 = 1 n 0 3 1 A = 1 1 3 -1 2 3 n
27 eltpg A A 1 - 1 + i 3 2 - 1 - i 3 2 A = 1 A = - 1 + i 3 2 A = - 1 - i 3 2
28 1 eleq2i A R A 1 - 1 + i 3 2 - 1 - i 3 2
29 3m1e2 3 1 = 2
30 2cn 2
31 30 addid2i 0 + 2 = 2
32 29 31 eqtr4i 3 1 = 0 + 2
33 32 oveq2i 0 3 1 = 0 0 + 2
34 0z 0
35 fztp 0 0 0 + 2 = 0 0 + 1 0 + 2
36 34 35 ax-mp 0 0 + 2 = 0 0 + 1 0 + 2
37 33 36 eqtri 0 3 1 = 0 0 + 1 0 + 2
38 37 rexeqi n 0 3 1 A = 1 1 3 -1 2 3 n n 0 0 + 1 0 + 2 A = 1 1 3 -1 2 3 n
39 3ne0 3 0
40 5 39 reccli 1 3
41 1cxp 1 3 1 1 3 = 1
42 40 41 ax-mp 1 1 3 = 1
43 42 oveq1i 1 1 3 -1 2 3 n = 1 -1 2 3 n
44 43 eqeq2i A = 1 1 3 -1 2 3 n A = 1 -1 2 3 n
45 44 rexbii n 0 0 + 1 0 + 2 A = 1 1 3 -1 2 3 n n 0 0 + 1 0 + 2 A = 1 -1 2 3 n
46 34 elexi 0 V
47 ovex 0 + 1 V
48 ovex 0 + 2 V
49 oveq2 n = 0 -1 2 3 n = -1 2 3 0
50 30 5 39 divcli 2 3
51 cxpcl 1 2 3 1 2 3
52 3 50 51 mp2an 1 2 3
53 exp0 1 2 3 -1 2 3 0 = 1
54 52 53 ax-mp -1 2 3 0 = 1
55 49 54 eqtrdi n = 0 -1 2 3 n = 1
56 55 oveq2d n = 0 1 -1 2 3 n = 1 1
57 1t1e1 1 1 = 1
58 56 57 eqtrdi n = 0 1 -1 2 3 n = 1
59 58 eqeq2d n = 0 A = 1 -1 2 3 n A = 1
60 id n = 0 + 1 n = 0 + 1
61 2 addid2i 0 + 1 = 1
62 60 61 eqtrdi n = 0 + 1 n = 1
63 62 oveq2d n = 0 + 1 -1 2 3 n = -1 2 3 1
64 exp1 1 2 3 -1 2 3 1 = 1 2 3
65 52 64 ax-mp -1 2 3 1 = 1 2 3
66 63 65 eqtrdi n = 0 + 1 -1 2 3 n = 1 2 3
67 66 oveq2d n = 0 + 1 1 -1 2 3 n = 1 1 2 3
68 52 mulid2i 1 1 2 3 = 1 2 3
69 1cubrlem 1 2 3 = - 1 + i 3 2 -1 2 3 2 = - 1 - i 3 2
70 69 simpli 1 2 3 = - 1 + i 3 2
71 68 70 eqtri 1 1 2 3 = - 1 + i 3 2
72 67 71 eqtrdi n = 0 + 1 1 -1 2 3 n = - 1 + i 3 2
73 72 eqeq2d n = 0 + 1 A = 1 -1 2 3 n A = - 1 + i 3 2
74 id n = 0 + 2 n = 0 + 2
75 74 31 eqtrdi n = 0 + 2 n = 2
76 75 oveq2d n = 0 + 2 -1 2 3 n = -1 2 3 2
77 76 oveq2d n = 0 + 2 1 -1 2 3 n = 1 -1 2 3 2
78 52 sqcli -1 2 3 2
79 78 mulid2i 1 -1 2 3 2 = -1 2 3 2
80 69 simpri -1 2 3 2 = - 1 - i 3 2
81 79 80 eqtri 1 -1 2 3 2 = - 1 - i 3 2
82 77 81 eqtrdi n = 0 + 2 1 -1 2 3 n = - 1 - i 3 2
83 82 eqeq2d n = 0 + 2 A = 1 -1 2 3 n A = - 1 - i 3 2
84 46 47 48 59 73 83 rextp n 0 0 + 1 0 + 2 A = 1 -1 2 3 n A = 1 A = - 1 + i 3 2 A = - 1 - i 3 2
85 38 45 84 3bitri n 0 3 1 A = 1 1 3 -1 2 3 n A = 1 A = - 1 + i 3 2 A = - 1 - i 3 2
86 27 28 85 3bitr4g A A R n 0 3 1 A = 1 1 3 -1 2 3 n
87 26 86 bitr4d A A 3 = 1 A R
88 87 pm5.32i A A 3 = 1 A A R
89 23 88 bitr4i A R A A 3 = 1