Metamath Proof Explorer


Theorem 1cvrat

Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in Crawley p. 112. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses 1cvrat.b B = Base K
1cvrat.l ˙ = K
1cvrat.j ˙ = join K
1cvrat.m ˙ = meet K
1cvrat.u 1 ˙ = 1. K
1cvrat.c C = K
1cvrat.a A = Atoms K
Assertion 1cvrat K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P ˙ Q ˙ X A

Proof

Step Hyp Ref Expression
1 1cvrat.b B = Base K
2 1cvrat.l ˙ = K
3 1cvrat.j ˙ = join K
4 1cvrat.m ˙ = meet K
5 1cvrat.u 1 ˙ = 1. K
6 1cvrat.c C = K
7 1cvrat.a A = Atoms K
8 hllat K HL K Lat
9 8 3ad2ant1 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X K Lat
10 simp21 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P A
11 1 7 atbase P A P B
12 10 11 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P B
13 simp22 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X Q A
14 1 7 atbase Q A Q B
15 13 14 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X Q B
16 1 3 latjcom K Lat P B Q B P ˙ Q = Q ˙ P
17 9 12 15 16 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P ˙ Q = Q ˙ P
18 17 oveq1d K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P ˙ Q ˙ X = Q ˙ P ˙ X
19 1 3 latjcl K Lat Q B P B Q ˙ P B
20 9 15 12 19 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X Q ˙ P B
21 simp23 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X X B
22 1 4 latmcom K Lat Q ˙ P B X B Q ˙ P ˙ X = X ˙ Q ˙ P
23 9 20 21 22 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X Q ˙ P ˙ X = X ˙ Q ˙ P
24 18 23 eqtrd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P ˙ Q ˙ X = X ˙ Q ˙ P
25 simp1 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X K HL
26 21 13 10 3jca K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X X B Q A P A
27 simp31 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P Q
28 27 necomd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X Q P
29 simp33 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ P ˙ X
30 hlop K HL K OP
31 30 3ad2ant1 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X K OP
32 1 2 5 ople1 K OP Q B Q ˙ 1 ˙
33 31 15 32 syl2anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X Q ˙ 1 ˙
34 simp32 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X X C 1 ˙
35 1 2 3 5 6 7 1cvrjat K HL X B P A X C 1 ˙ ¬ P ˙ X X ˙ P = 1 ˙
36 25 21 10 34 29 35 syl32anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X X ˙ P = 1 ˙
37 33 36 breqtrrd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X Q ˙ X ˙ P
38 1 2 3 4 7 cvrat3 K HL X B Q A P A Q P ¬ P ˙ X Q ˙ X ˙ P X ˙ Q ˙ P A
39 38 imp K HL X B Q A P A Q P ¬ P ˙ X Q ˙ X ˙ P X ˙ Q ˙ P A
40 25 26 28 29 37 39 syl23anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X X ˙ Q ˙ P A
41 24 40 eqeltrd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P ˙ Q ˙ X A