| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cvratex.b |
|
| 2 |
|
1cvratex.s |
|
| 3 |
|
1cvratex.u |
|
| 4 |
|
1cvratex.c |
|
| 5 |
|
1cvratex.a |
|
| 6 |
|
simp1 |
|
| 7 |
|
eqid |
|
| 8 |
1 3 7 4 5
|
1cvrco |
|
| 9 |
8
|
biimp3a |
|
| 10 |
|
eqid |
|
| 11 |
10 4 5
|
2dim |
|
| 12 |
6 9 11
|
syl2anc |
|
| 13 |
|
simp11 |
|
| 14 |
|
hlop |
|
| 15 |
13 14
|
syl |
|
| 16 |
13
|
hllatd |
|
| 17 |
|
simp12 |
|
| 18 |
1 7
|
opoccl |
|
| 19 |
15 17 18
|
syl2anc |
|
| 20 |
|
simp2l |
|
| 21 |
1 5
|
atbase |
|
| 22 |
20 21
|
syl |
|
| 23 |
1 10
|
latjcl |
|
| 24 |
16 19 22 23
|
syl3anc |
|
| 25 |
1 7
|
opoccl |
|
| 26 |
15 24 25
|
syl2anc |
|
| 27 |
|
simp2r |
|
| 28 |
1 5
|
atbase |
|
| 29 |
27 28
|
syl |
|
| 30 |
1 10
|
latjcl |
|
| 31 |
16 24 29 30
|
syl3anc |
|
| 32 |
1 7
|
opoccl |
|
| 33 |
15 31 32
|
syl2anc |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
1 34 35
|
op0le |
|
| 37 |
15 33 36
|
syl2anc |
|
| 38 |
|
simp3r |
|
| 39 |
1 2 4
|
cvrlt |
|
| 40 |
13 24 31 38 39
|
syl31anc |
|
| 41 |
1 2 7
|
opltcon3b |
|
| 42 |
15 24 31 41
|
syl3anc |
|
| 43 |
40 42
|
mpbid |
|
| 44 |
|
hlpos |
|
| 45 |
13 44
|
syl |
|
| 46 |
1 35
|
op0cl |
|
| 47 |
15 46
|
syl |
|
| 48 |
1 34 2
|
plelttr |
|
| 49 |
45 47 33 26 48
|
syl13anc |
|
| 50 |
37 43 49
|
mp2and |
|
| 51 |
2
|
pltne |
|
| 52 |
13 47 26 51
|
syl3anc |
|
| 53 |
50 52
|
mpd |
|
| 54 |
53
|
necomd |
|
| 55 |
1 34 35 5
|
atle |
|
| 56 |
13 26 54 55
|
syl3anc |
|
| 57 |
|
simp3l |
|
| 58 |
1 2 4
|
cvrlt |
|
| 59 |
13 19 24 57 58
|
syl31anc |
|
| 60 |
1 2 7
|
opltcon3b |
|
| 61 |
15 19 24 60
|
syl3anc |
|
| 62 |
59 61
|
mpbid |
|
| 63 |
1 7
|
opococ |
|
| 64 |
15 17 63
|
syl2anc |
|
| 65 |
62 64
|
breqtrd |
|
| 66 |
65
|
adantr |
|
| 67 |
|
simpl11 |
|
| 68 |
67 44
|
syl |
|
| 69 |
1 5
|
atbase |
|
| 70 |
69
|
adantl |
|
| 71 |
26
|
adantr |
|
| 72 |
|
simpl12 |
|
| 73 |
1 34 2
|
plelttr |
|
| 74 |
68 70 71 72 73
|
syl13anc |
|
| 75 |
66 74
|
mpan2d |
|
| 76 |
75
|
reximdva |
|
| 77 |
56 76
|
mpd |
|
| 78 |
77
|
3exp |
|
| 79 |
78
|
rexlimdvv |
|
| 80 |
12 79
|
mpd |
|