Metamath Proof Explorer


Theorem 1cvrjat

Description: An element covered by the lattice unit, when joined with an atom not under it, equals the lattice unit. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses 1cvrjat.b B = Base K
1cvrjat.l ˙ = K
1cvrjat.j ˙ = join K
1cvrjat.u 1 ˙ = 1. K
1cvrjat.c C = K
1cvrjat.a A = Atoms K
Assertion 1cvrjat K HL X B P A X C 1 ˙ ¬ P ˙ X X ˙ P = 1 ˙

Proof

Step Hyp Ref Expression
1 1cvrjat.b B = Base K
2 1cvrjat.l ˙ = K
3 1cvrjat.j ˙ = join K
4 1cvrjat.u 1 ˙ = 1. K
5 1cvrjat.c C = K
6 1cvrjat.a A = Atoms K
7 simprr K HL X B P A X C 1 ˙ ¬ P ˙ X ¬ P ˙ X
8 1 2 3 5 6 cvr1 K HL X B P A ¬ P ˙ X X C X ˙ P
9 8 adantr K HL X B P A X C 1 ˙ ¬ P ˙ X ¬ P ˙ X X C X ˙ P
10 7 9 mpbid K HL X B P A X C 1 ˙ ¬ P ˙ X X C X ˙ P
11 simpl1 K HL X B P A X C 1 ˙ ¬ P ˙ X K HL
12 hlop K HL K OP
13 11 12 syl K HL X B P A X C 1 ˙ ¬ P ˙ X K OP
14 simpl2 K HL X B P A X C 1 ˙ ¬ P ˙ X X B
15 11 hllatd K HL X B P A X C 1 ˙ ¬ P ˙ X K Lat
16 simpl3 K HL X B P A X C 1 ˙ ¬ P ˙ X P A
17 1 6 atbase P A P B
18 16 17 syl K HL X B P A X C 1 ˙ ¬ P ˙ X P B
19 1 3 latjcl K Lat X B P B X ˙ P B
20 15 14 18 19 syl3anc K HL X B P A X C 1 ˙ ¬ P ˙ X X ˙ P B
21 eqid oc K = oc K
22 1 21 5 cvrcon3b K OP X B X ˙ P B X C X ˙ P oc K X ˙ P C oc K X
23 13 14 20 22 syl3anc K HL X B P A X C 1 ˙ ¬ P ˙ X X C X ˙ P oc K X ˙ P C oc K X
24 10 23 mpbid K HL X B P A X C 1 ˙ ¬ P ˙ X oc K X ˙ P C oc K X
25 hlatl K HL K AtLat
26 11 25 syl K HL X B P A X C 1 ˙ ¬ P ˙ X K AtLat
27 1 21 opoccl K OP X ˙ P B oc K X ˙ P B
28 13 20 27 syl2anc K HL X B P A X C 1 ˙ ¬ P ˙ X oc K X ˙ P B
29 1 21 opoccl K OP X B oc K X B
30 13 14 29 syl2anc K HL X B P A X C 1 ˙ ¬ P ˙ X oc K X B
31 eqid 0. K = 0. K
32 31 4 21 opoc1 K OP oc K 1 ˙ = 0. K
33 11 12 32 3syl K HL X B P A X C 1 ˙ ¬ P ˙ X oc K 1 ˙ = 0. K
34 simprl K HL X B P A X C 1 ˙ ¬ P ˙ X X C 1 ˙
35 1 4 op1cl K OP 1 ˙ B
36 11 12 35 3syl K HL X B P A X C 1 ˙ ¬ P ˙ X 1 ˙ B
37 1 21 5 cvrcon3b K OP X B 1 ˙ B X C 1 ˙ oc K 1 ˙ C oc K X
38 13 14 36 37 syl3anc K HL X B P A X C 1 ˙ ¬ P ˙ X X C 1 ˙ oc K 1 ˙ C oc K X
39 34 38 mpbid K HL X B P A X C 1 ˙ ¬ P ˙ X oc K 1 ˙ C oc K X
40 33 39 eqbrtrrd K HL X B P A X C 1 ˙ ¬ P ˙ X 0. K C oc K X
41 1 31 5 6 isat K HL oc K X A oc K X B 0. K C oc K X
42 11 41 syl K HL X B P A X C 1 ˙ ¬ P ˙ X oc K X A oc K X B 0. K C oc K X
43 30 40 42 mpbir2and K HL X B P A X C 1 ˙ ¬ P ˙ X oc K X A
44 1 2 31 5 6 atcvreq0 K AtLat oc K X ˙ P B oc K X A oc K X ˙ P C oc K X oc K X ˙ P = 0. K
45 26 28 43 44 syl3anc K HL X B P A X C 1 ˙ ¬ P ˙ X oc K X ˙ P C oc K X oc K X ˙ P = 0. K
46 24 45 mpbid K HL X B P A X C 1 ˙ ¬ P ˙ X oc K X ˙ P = 0. K
47 46 fveq2d K HL X B P A X C 1 ˙ ¬ P ˙ X oc K oc K X ˙ P = oc K 0. K
48 1 21 opococ K OP X ˙ P B oc K oc K X ˙ P = X ˙ P
49 13 20 48 syl2anc K HL X B P A X C 1 ˙ ¬ P ˙ X oc K oc K X ˙ P = X ˙ P
50 31 4 21 opoc0 K OP oc K 0. K = 1 ˙
51 11 12 50 3syl K HL X B P A X C 1 ˙ ¬ P ˙ X oc K 0. K = 1 ˙
52 47 49 51 3eqtr3d K HL X B P A X C 1 ˙ ¬ P ˙ X X ˙ P = 1 ˙