Metamath Proof Explorer


Theorem 1cxp

Description: Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion 1cxp A 1 A = 1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-1ne0 1 0
3 cxpef 1 1 0 A 1 A = e A log 1
4 1 2 3 mp3an12 A 1 A = e A log 1
5 log1 log 1 = 0
6 5 oveq2i A log 1 = A 0
7 mul01 A A 0 = 0
8 6 7 syl5eq A A log 1 = 0
9 8 fveq2d A e A log 1 = e 0
10 ef0 e 0 = 1
11 9 10 eqtrdi A e A log 1 = 1
12 4 11 eqtrd A 1 A = 1